翻訳と辞書 |
Toric manifold : ウィキペディア英語版 | Toric manifold In mathematics, a toric manifold is a topological analogue of toric variety in algebraic geometry. It is an even-dimensional manifold with an effective smooth action of an n-dimensional compact torus which is locally standard with the orbit space a simple convex polytope.〔.〕〔.〕 The aim is to do combinatorics on the quotient polytope and obtain information on the manifold above. For example the Euler characteristic, cohomology ring of the manifold can be described in terms of the polytope. ==The Atiyah and Guillemin-Sternberg theorem== This theorem states that the image of the moment map of a Hamiltonian toric action is the convex hull of the set of moments of the points fixed by the action. In particular, this image is a convex polygon
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Toric manifold」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|